

TARGET JEE(ADVANCED)

Revision Exercise (Quadratic eqn.) QUESTION BANK ON QUADRATIC EQUATION

Instructions: Please revise class room notes of Sudhir Jain before solving Q.Bank

Time Limit: 5 Sitting Each of 45 Minutes duration approx.

[STRAIGHT OBJECTIVE TYPE]

Q.1 The values of a for which the equation $\sqrt{a} \sin x - 2\cos x = \sqrt{2} + \sqrt{2-a}$ has solutions are

(A)
$$a > 0$$
 (B) $a \le 3$ (C) $0 \le a \le 2$ (D) $\sqrt{5} - 1 \le a \le 2$

Q.2 Let a and b be two distinct roots of the equation $x^3 + 3x^2 - 1 = 0$. The equation which has (ab) as its root is equal to (A) $x^3 - 3x - 1 = 0$ (B) $x^3 - 3x^2 + 1 = 0$ (C) $x^3 + x^2 - 3x + 1 = 0$ (D) $x^3 + x^2 + 3x - 1 = 0$

Q.3 Let sin x and sin y be roots of the quadratic equation $a \sin^2\theta + b \sin\theta + c = 0$ (a, b, $c \in R$ and $a \neq 0$) such that sin x + 2 sin y = 1, then the value of $(a^2 + 2b^2 + 3ab + ac)$ equals (A) 0 (B) 1 (C) 2 (D) 4

Q.4 If two roots of the equation $(x-1)(2x^2-3x+4) = 0$ coincide with roots of the equation $x^3 + (a+1)x^2 + (a+b)x + b = 0$ where $a, b \in R$ then 2(a+b) equals (A) 4 (B) 2 (C) 1 (D) 0

Q.5 Let k be a real number such that $k \neq 0$. If α and β are non zero complex numbers satisfying

 $\alpha + \beta = -2k$ and $\alpha^2 + \beta^2 = 4k^2 - 2k$, then a quadratic equation having $\frac{\alpha + \beta}{\alpha}$ and $\frac{\alpha + \beta}{\beta}$ as its roots is equal to (A) $4x^2 - 4kx + k = 0$ (B) $x^2 - 4kx + 4k = 0$ (C) $4kx^2 - 4x + k = 0$ (D) $4kx^2 - 4kx + 1 = 0$

(A)
$$4x^2 - 4kx + k = 0$$
 (B) $x^2 - 4kx + 4k = 0$ (C) $4kx^2 - 4x + k = 0$ (D) $4kx^2 - 4kx + 1 = 0$

Q.6 If x and y satisfy the relation $(x-1)^2 + y^2 = 1$, then the possible value of (x + y) is equal to

(A)
$$\frac{-3}{2}$$
 (B) $\frac{5}{2}$ (C) 3 (D) $\frac{-1}{4}$

Q.7 Let $P(x) = x^2 + \frac{4x}{3} + \log_{10}(4.\overline{9})$, $A = \prod_{i=1}^{12} P(a_i)$ where a_1, a_2, \dots, a_{12} are positive reals and

 $B = \prod_{j=1}^{13} P(b_j) \text{ where } b_1, b_2, \dots, b_{13} \text{ are non-positive reals, then which one of the following is always}$

correct?

 $(A) A > 0, B > 0 \qquad (B) A > 0, B < 0 \qquad (C) A < 0, B > 0 \qquad (D) A < 0, B < 0$

Q.8 The set of all real values of x for which both $\log_{\frac{x-2}{x+3}}(x^2+x+1)$ and $\sqrt{x^2-9}$ are meaningless,

is equal to
(A)
$$[-4, -3]$$
 (B) $(-3, -2)$ (C) $(-3, 2]$ (D) $(-3, 1)$

Q.9 Let a_1 and a_2 be two values of a for which the expression $f(x, y) = 2x^2 + 3xy + y^2 + ay + 3x + 1$ can be factorised into two linear factors then the product (a_1a_2) is equal to (A) 1 (B) 3 (C) 5 (D) 7

Q.10 The following figure shows the graph of $f(x) = ax^2 - bx + c$. Then which one of the following is correct?

(A)
$$\frac{b}{c} > 0$$
 (B) a and c are of opposite sig

(C) a and b are of same sign (D) None

Q.B on Quadratic Equation

Q.11	If α , β , γ are the roots of the cubic 2010 x ³ + 4 x ² + 1 = 0, then the value of $(\alpha^{-2} + \beta^{-2} + \gamma^{-2})$ is equal to							
	(A) 8	(B) – 8	(C) 4	(D) – 4				
Q.12	If exactly one root of the quadratic equation $x^2 - \left(k + \frac{11}{3}\right)x - (k^2 + k + 1) = 0$ lies in (0, 3)							
	then which one of the following relation is correct? (A) $-8 \le k \le -4$ (B) $-3 \le k \le -1$ (C) $1 \le k \le 4$ (D) $6 \le k \le 10$							
Q.13	Let a, b and c be three distinct real roots of the cubic $x^3 + 2x^2 - 4x - 4 = 0$.							
	If the equation $x^3 + qx^2 + rx + s = 0$ has roots $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$, then the value of $(q + r + s)$ is equal							
	(A) $\frac{3}{4}$	(B) $\frac{1}{2}$	(C) $\frac{1}{4}$	(D) $\frac{1}{6}$				
Q.14	Number of ordered pairs (x, y) of real numbers satisfying the equation $x^2 + y^2 - 24x - 26y + 313 = 0$							
	is equal to (A) infinite (C) exactly one		(B) finite but more that (D) zero	an one				
Q.15	If the roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then $\left(\frac{a}{a+b+c}\right)^2$							
	equals (A) k ²	(B) $(k + 1)^2$	(C) $(k+2)^2$	(D) $k^2 (k+1)^2$				
Q.16	If $c^2 = 4d$ and the two equations $x^2 - ax + b = 0$ and $x^2 - cx + d = 0$ have one common root, then the value of $2(b+d)$ is equal to							
	(A) $\frac{a}{c}$	(B) ac	(C) 2ac	(D) $a + c$				
Q.17	If min. $(2x^2 - ax + 2) > max. (b - 1 + 2x - x^2)$ then roots of the equation $2x^2 + ax + (2 - b) = 0$, and (A) positive and distinct(B) negative and distinct(C) opposite in sign(D) imaginary							
Q.18	The number of integral values of α for which the inequality $x^2 - 2(4\alpha - 1)x + 15\alpha^2 > 2\alpha + 7$							
	is true for every $x \in I$ (A) 0	R, is (B) 1	(C) 2	(D) 3				
Q.19	If roots of the quadratic equation $bx^2 - 2ax + a = 0$ are real and distinct, where $a, b \in R$ and $b \neq 0$, then (A) at least one root lies in the interval (0, 1). (B) no root lies in the interval (0, 1). (C) at least one root lies in the interval $(-1, 0)$. (D) none of the above.							
Q.20	Let a, b, $c \in R_0$ and 1 be a root of the equation $ax^2 + bx + c = 0$, then the equation							
	$4ax^2 + 3bx + 2c = 0$ (A) imaginary roots (C) real and unequal		(B) real and equal roots(D) rational roots					
Q.21	If p and q are the roots of the quadratic equation $x^2 - (\alpha - 2)x - \alpha = 1$ ($\alpha \in \mathbb{R}$), then the minimum							
	value of $(p^2 + q^2)$ is e (A) 2	equal to (B) 3	(C) 5	(D) 6				

Q.B on Quadratic Equation

[3]

Q.22 Number of integral values of a for which every solution of the inequality $x^2-3x+4>0$ is also the solution of the inequality $(a-1)x^2 - (a+|a-1|+2)x+1 \ge 0$, is (A) 0 (B) 1 (C) 2 (D) 3

Q.23 If α and β are the roots of equation $x^2 - a(x+1) - b = 0$ where $a, b \in R - \{0\}$ and $a + b \neq 0$

then the value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} - \frac{2}{a+b}$ is equal to (A) $\frac{4}{a+b}$ (B) $\frac{2}{a+b}$ (C) 0 (D) $\frac{1}{a+b}$

[COMPREHENSION TYPE] Paragraph for question nos. 24 & 25

For $a, b \in R - \{0\}$, let $f(x) = ax^2 + bx + a$ satisfies $f\left(x + \frac{7}{4}\right) = f\left(\frac{7}{4} - x\right) \quad \forall x \in R$. Also the equation f(x) = 7x + a has only one real and distinct solution.

Q.24 The value of (a + b) is equal to (A) 4 (B) 5 (C) 6 (D) 7 Q.25 The minimum value of f(x) in $\left[0, \frac{3}{2}\right]$ is equal to (A) $\frac{-33}{8}$ (B) 0 (C) 4 (D) - 2

Paragraph for question nos. 26 to 28

Consider a rational function $f(x) = \frac{x^2 - 3x - 4}{x^2 - 3x + 4}$ and a quadratic function $g(x) = x^2 - (b+1)x + b - 1$, where b is a parameter.

Q.26 The sum of integers in the range of f(x), is (A) - 5 (B) - 6 (C) - 9 (D) - 10

Q.27 If both roots of the equation g(x) = 0 are greater than -1, then b lies in the interval (A) $(-\infty, -2)$ (B) $\left(-\infty, \frac{-1}{4}\right)$ (C) $(-2, \infty)$ (D) $\left(\frac{-1}{2}, \infty\right)$

Q.28 The largest natural number b satisfying $g(x) > -2 \forall x \in R$, is (A) 1 (B) 2 (C) 3 (D) 4

Paragraph for question nos. 29 to 31

Consider a function $f(x) = \frac{3x + a}{x^2 + 3}$ which has greatest value equal to $\frac{3}{2}$. Q.29 The value of the constant number a is equal to (A) 1 (B) 2 (C) 3 (D) 4

Q.30 The minimum value of f(x) is equal to

(A)
$$\tan\left(\frac{-\pi}{3}\right)$$
 (B) $\sin\left(\frac{-\pi}{6}\right)$ (C) $\cos\left(\frac{-\pi}{3}\right)$ (D) $\cot\left(\frac{\pi}{2}\right)$

Q.31 If the equation f(x) = b has two distinct real roots then the number of integral values of b is equal to (A) 0 (B) 1 (C) 2 (D) 3

Q.B on Quadratic Equation

Paragraph for question nos. 32 to 34

Consider two quadratic trinomials $f(x) = x^2 - 2ax + a^2 - 1$ and $g(x) = (4b - b^2 - 5) x^2 - (2b - 1) x + 3b$, where $a, b \in \mathbb{R}$.

Q.32 The values of a for which both roots of the equation f(x) = 0 are greater than -2 but less than 4, lie in the interval

 $(A) - \infty < a < -3 \qquad (B) - 2 < a < 0 \qquad (C) - 1 < a < 3 \qquad (D) \ 5 < a < \infty$

Q.33 If roots of the quadratic equation g(x)=0 lie on either side of unity, then number of integral values of b is equal to (A) 1 (D) 2 (D) 4

(A) 1 (B) 2 (C) 3 (D) 4

 $\begin{array}{ll} Q.34 & \mbox{If } f(x) < 0 \; \forall \; x \in [0,1], \; \mbox{then a lie in the interval} \\ (A) - 1 < a < 1 & (B) \; 0 < a < 2 & (C) \; 0 < a < 1 & (D) \; a > 3 \end{array}$

[REASONING TYPE]

- Q.35 **Statement-1:** The equation $(x-p)(x-r) + \sin \theta (x-q) (x-s) = 0$, where p < q < r < s and $\theta \in R$ has non-real roots.
 - Statement-2: If the equation $ax^2 + bx + c = 0$, where $a, b, c \in R$ and $a \neq 0$ has non-real roots then $b^2 4ac < 0$.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.
- Q.36 Statement-1: Number of integral values of m for which exactly one root of the equation $x^2 2mx + m^2 1 = 0$ lies in the interval (-2, 4) equals 2.
 - **Statement-2:** Let $f(x) = ax^2 + bx + c$ where $a, b, c \in R$ and $a \neq 0$. If f(d) f(e) < 0 then the equation f(x) = 0 has exactly one root in (d, e).
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.

- Q.37 Statement 1: If $0 < \theta < \frac{\pi}{4}$, then the equation $(x \sin \theta)(x \cos \theta) 2 = 0$ has both roots in the interval $(\sin \theta, \cos \theta)$.
 - **Statement 2:** Let $f(x) = px^2 + qx + r$ (p, q, $r \in R$ and $p \neq 0$) be such that f(a) f(b) < 0 then there exist exactly one solution of the equation f(x) = 0 in interval (a, b).
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
 - (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true.
- Q.38 **Statement-1:** If the equations $ax^2 + bx + c = 0$ (a, b, $c \in R$ and $a \neq 0$) and $2x^2 + 7x + 10 = 0$ have a common root, then $\frac{2a + c}{b} = 2$.

Statement-2: If both roots of $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ are same, then

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}. \text{ Given } a_1, b_1, c_1, a_2, b_2, c_2 \in \mathbb{R} \text{ and } a_1a_2 \neq 0.$$

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.(C) Statement-1 is true, statement-2 is false.(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE] Paragraph for question nos. 39 to 41

Consider the expression $g(x) = \sin^2 x - (b+1) \sin x + 3 (b-2)$ where b is a real parameter.

- Q.39 Number of integral values of b for which the equation g(x) = 0 has exactly one root in the interval $[0, \pi]$ are
 - (A) 0 (B) 1 (C) 2 (D) 3
- Q.40If the equation g(x) = 0 have two distinct roots in $(0, \pi)$ then b lie in the interval
(A) (0, 3)(B) (1, 3)(C) (2, 3)(D) (0, 2)
- Q.41If g(x) is non-negative for all real x, then b lie in the interval
(A) $[1, \infty)$ (B) $(-\infty, 1]$ (C) [-1, 1](D) $[3, \infty)$

Q.42 For $x \in R$, the expression $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ can not lie between, (A) (5, 7) (B) (12, 19) (C) (1, 4) (D) (8, 9)

 $\begin{array}{ll} Q.43 & \text{In which of the following inequalities, the set of all real values of } x \text{ is same as the set of all real values of } k \text{ for which the equation } kx^2 - 4x + k = 0 \text{ has real roots and satisfying } 1 - k \leq 0? \\ (A) \ 0 \leq \log_2 x \leq 1 & (B) \ x^2 - 3x + 2 \leq 0 \\ (C) \sin(\pi x) \leq 0 \text{ in } [0, 2] & (D) \ | \ x - 1 \ | \leq 1 \end{array}$

Q.44 If the vertex of the parabola $y = 3x^2 - 12x + 9$ is (a, b), then the parabola whose vertex is (b, a), is(are) (A) $y = x^2 + 6x + 11$ (B) $y = x^2 - 7x + 3$ (C) $y = -2x^2 - 12x - 16$ (D) $y = -2x^2 + 16x - 13$

Q.45 Let x and y be 2 real numbers which satisfy the equations $(\tan^2 x - \sec^2 y) = \frac{5a}{6} - 3$ and $(-\sec^2 x + \tan^2 y) = a^2$, then the value of a can be equal to (A) $\frac{2}{3}$ (B) $\frac{-2}{3}$ (C) $\frac{3}{2}$ (D) $\frac{-3}{2}$

Q.46 If the quadratic polynomial $P(x) = (p-3)x^2 - 2px + 3p - 6$ ranges from $[0, \infty)$ for every $x \in R$, then the value of p can be

(A)
$$\frac{3}{2}$$
 (B) 4 (C) 6 (D) 7

Q.47 Let a, b and c be real numbers. Which of the following statement(s) about the equation (x-a)(x-b) = c is/are incorrect? (A) If c > 0, then roots are always real. (C) If c < 0, then roots are always real. (D) If c < 0, then roots are always non-real.

Q.48 If quadratic equation $x^2 + 2(a+2b)x + (2a+b-1) = 0$ has unequal real roots for all $b \in \mathbb{R}$ then the possible values of a can be equal to (A) 5 (B)-1 (C)-10 (D) 3

Q.49 Let $f(x) = x^2 + ax + b$ and $g(x) = x^2 + cx + d$ be two quadratic polynomials with real coefficients and satisfy ac = 2(b+d). Then which of the following is(are) correct? (A) Exactly one of either f(x) = 0 or g(x) = 0 must have real roots. (B) At least one of either f(x) = 0 or g(x) = 0 must have real roots.

- (B) At least one of either f(x) = 0 or g(x) = 0 must have real roots.
- (C) Both f(x) = 0 and g(x) = 0 must have real roots.
- (D) Both f(x) = 0 and g(x) = 0 must have imaginary roots.

Q.B on Quadratic Equation

	a(x-b)(x+c)+b(x-a)(x+c)-c(x-a)(x-b)=0 has(A) real and unequal roots(B) roots with opposite sig(C) exactly one root in (b, a)(D) imaginary roots	1							
[MATCH THE COLUMN]									
Q.52	The expression $y = ax^2 + bx + c$ (a, b, $c \in R$ and $a \neq 0$) represents a parabola which cuts the x-axis at the points which are roots of the equation $ax^2 + bx + c = 0$. Column-II contains values which correspond to the nature of roots mentioned in column-I.								
(A) (B) (C)	Column-I For $a = 1, c = 4$, if both roots are greater than 2 then b can be equal to For $a = -1, b = 5$, if roots lie on either side of -1 then c can be equal to For $b = 6, c = 1$, if one root is less than -1 and the other root greater the	(P) (Q) nan (R)	тп-П 4 8 10	4 8 10					
	$\frac{-1}{2}$ then a can be equal to	(S)		no real value					
Q.53	Column-I		Column-II						
	(A) If $\alpha, \beta \in (0, \pi)$ and $\alpha \neq \beta$ satisfy the equation $\frac{1 - \cos 2\theta}{\sin \theta} = \frac{1}{2}$,	(P)	0					
	then the value of $\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)$ is equal to		(Q)	8					
	(B) If the expression $\frac{x^2 + (2m+3)x + (m^2+3)}{\sqrt{x^2 + (2m+1)x + m^2 + 2}}$		(R)	1					
	is non-negative $\forall x \in R$, then the possible values of m can be	equal to	(S)	- 1					
	(C) If the parabola $y = 5x^2 + x - 3$ lies above the parabola $y = 2x^2 + 6x - 1$, then integral values of x can be equated.	(T)	2						
	(D) The number of real solutions of the equation $x^{2 \log_x (x+3)} = 16$ is equal to								
	[SUBJECTIVE]								
Q.54	Let M be the minimum value of $f(\theta) = (3\cos^2\theta + \sin^2\theta)(\sec^2\theta + 3\csc^2\theta)$, for permissible real values of θ and P denotes the product of all real solutions of the equation $\frac{(x-1)(50-10x)}{x^2-5x} = x^2-8x + 7$. Find (P M).								
Q.55	If the range of values of a for which the roots of the equation $x^2 - 2x - a^2 + 1 = 0$								
	lie between the roots of the equation $x^2 - 2(a+1)x + a(a-1) = 0$ is (p,q) , find the value of $\left(q + \frac{1}{p^2}\right)$.								
0.50	Let y_{1} and y_{2} be the real rests of the equation $y_{2}^{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7}$	0							

If all values of x which satisfies the inequality $\log_{1}(x^{2}+2px+p^{2}+1) \ge 0$ also satisfy the inequality

 $kx^2 + kx - k^2 \le 0$ for all real values of k, then all possible values of p lies in the interval

(B) [0, 1]

If a, b, c are sides of $\triangle ABC$ and a > b > c, then the equation

3

(C)[0,2]

(D)[-2,0]

Q.50

Q.51

(A) [-1, 1]

Q.56 Let x_1 and x_2 be the real roots of the equation $x^2 - kx + (k^2 + 7k + 15) = 0$. What is the maximum value of $(x_1^2 + x_2^2)$?

Q.B on Quadratic Equation

[7]

- Q.57 If sum of maximum and minimum value of $y = \log_2(x^4 + x^2 + 1) \log_2(x^4 + x^3 + 2x^2 + x + 1)$ can be expressed in form $((\log_2 m) - n)$, where m and 2 are coprime then compute (m + n).
- Q.58 If $1 \log_x 2 + \log_{x^2} 9 \log_{x^3} 64 < 0$, then range of x is (a, b). Find the minimum value of (a + 9b).
- Q.59 Let $f(x) = x^2 + ax + b$. If $\forall x \in R$, there exist a real value of y such that f(y) = f(x) + y, then find the maximum value of 100a.
- Q.60 If α , β are roots of the equation $2x^2 + 6x + b = 0$ where b < 0, then find the least integral value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$.
- Q.61 If all the solutions of the inequality $x^2 6ax + 5a^2 \le 0$ are also the solutions of inequality $x^2 14x + 40 \le 0$ then find the number of possible integral values of a.
- Q.62 Find number of integral values of x satisfying $\log_4(3x^2 8x + 7) \log_2(x 2) \ge -\cot\frac{3\pi}{4}$.
- Q.63 Find the number of integral values of a so that the inequation $x^2 2(a+1)x + 3(a-3)(a+1) < 0$ is satisfied by atleast one $x \in \mathbb{R}^+$.
- Q.64 Suppose that a, b, c, d are rationals which satisfy a + b + c + d = 10, (a + b)(c + d) = 16, (a + c)(b + d) = 21 and (a + d)(b + c) = 24, then find the value of $(a^2 + b^2 + c^2 + d^2)$.

Q.1	D	Q.2	А	Q.3	А	Q.4	С	Q.5	В
Q.6	D	Q.7	А	Q.8	С	Q.9	С	Q.10	D
Q.11	В	Q.12	В	Q.13	С	Q.14	С	Q.15	D
Q.16	В	Q.17	D	Q.18	В	Q.19	А	Q.20	С
Q.21	С	Q.22	А	Q.23	С	Q.24	В	Q.25	D
Q.26	В	Q.27	D	Q.28	В	Q.29	С	Q.30	В
Q.31	В	Q.32	С	Q.33	В	Q.34	С	Q.35	D
Q.36	D	Q.37	D	Q.38	А	Q.39	В	Q.40	ABC
Q.41	AD	Q.42	AD	Q.43	AB	Q.44	AC	Q.45	AD
Q.46	С	Q.47	BCD	Q.48	BC	Q.49	В	Q.50	ABC
Q.51	ABC	Q.52	(A) S (B) Q, I	R (C) P		Q.53	(A) Q; (B) P, S;	(C) Q,	S (D) P
Q.54	0024	Q.55	0017	Q.56	0018	Q.57	0005	Q.58	0025
Q.59	0050	Q.60	0010	Q.61	0000	Q.62	0004	Q.63	0005
Q.64	0039								

ANSWER KEY